A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

نویسندگان

  • E. Alonso-Redondo
  • M. Schmitt
  • Z. Urbach
  • C. M. Hui
  • R. Sainidou
  • P. Rembert
  • K. Matyjaszewski
  • M. R. Bockstaller
  • G. Fytas
چکیده

The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to 'manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the 'anisotropic elasticity' across the particle-polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anisotropic lattice expansion of three-dimensional colloidal crystals and its impact on hypersonic phonon band gaps.

We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The var...

متن کامل

Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals

We investigate the effects of geometric and material nonlinearities introduced by deformation on the linear dynamic response of two-dimensional phononic crystals. Our analysis not only shows that deformation can be effectively used to tune the band gaps and the directionality of the propagating waves, but also reveals how geometric and material nonlinearities contribute to the tunable response ...

متن کامل

Polymer brushes on periodically nanopatterned surfaces.

Structural properties of polymer brushes tethered on a periodically nanopatterned substrate are investigated by computer simulations. The substrate consists of an alternating succession of two different types of equal-width parallel stripes, and the polymers are end-tethered selectively on every second stripe. Three distinct morphologies of the nanopatterned brush have been identified, and thei...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

Elongated polystyrene spheres as resonant building blocks in anisotropic colloidal crystals

Colloidal crystals have gained increasing importance due to their fascinating ability to mold the flow of light and sound (heat). The characteristics of these ordered assemblies of particles are strongly determined by the respective building blocks, which require complete understanding of their physical properties. In this study the mechanical properties of stretched polystyrene colloids (spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015